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We report an approach assisted by deep learning to design spectrally sensitive multiband absorbers that work in
the visible range. We propose a five-layered metal-insulator-metal grating structure composed of aluminum and
silicon dioxide, and we design its structural parameters by using an artificial neural network (ANN). For a
spectrally sensitive design, spectral information of resonant wavelengths is additionally provided as input as well
as the reflection spectrum. The ANN facilitates highly robust design of a grating structure that has an average
mean squared error (MSE) of 0.023. The optical properties of the designed structures are validated using electro-
magnetic simulations and experiments. Analysis of design results for gradually changing target wavelengths of
input shows that the trained ANN can learn physical knowledge from data. We also propose a method to reduce
the size of the ANN by exploiting observations of the trained ANN for practical applications. Our design method
can also be applied to design various nanophotonic structures that are particularly sensitive to resonant wave-
lengths, such as spectroscopic detection and multi-color applications. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.415789

1. INTRODUCTION

Metamaterial perfect absorbers (MPAs) have ultra-thin struc-
tures that can absorb almost all incident light [1,2]. This prop-
erty has been exploited in several prominent applications such
as thermal emitters [3], photovoltaics [4], spectroscopy [5], and
sensors [6]. To achieve perfect absorption, MPAs have been
developed as a variety of nano-structured devices that can con-
trol and manipulate the electromagnetic wave at the subwave-
length scale. These structures are composed of either resonators
[2,7] that couple to electric and magnetic fields, or of metal-
insulator-metal (MIM) structures [8,9] that localize the electro-
magnetic fields inside the dielectric waveguide. Most proposed
MPAs have one single resonant absorption peak in a single
structure.

Multiband absorbers that exhibit multiple resonances in a
single structure would be beneficial for spectroscopic or multi-
color applications [10,11]. Therefore, approaches to integrate
several resonators into a single structure have been proposed
[12–14]. In these structures, each component excites a single
resonance at each corresponding wavelength, and thereby yields
overall multiband or broadband resonances. However, the ap-
proaches usually yield large or complex structures. In contrast,

multiband absorbers can also be achieved using a relatively sim-
ple method of stacking several sets of MIM structures [15,16].
In particular, MIMs that have the structured top layers can
provide much higher absorption of light, because the top struc-
tured layers can enhance the localized field inside the waveguide
layer as well as the coupling of the incident light with the
guided mode. Still, designing multiband absorbers for targeting
multiple wavelengths of interest using MIM is not straightfor-
ward. In addition, the design process becomes more compli-
cated for tasks that involve multiple designs, i.e., the design
process must be repeated case-by-case for target tasks. This
problem also applies to cases in which multiple design tasks
must be applied to design general photonic devices. Efficient
and flexible design methods are being sought.

Along with the rapid development of a machine learning
technology, the design problem in nanophotonics has been mi-
tigated recently with the capability of learning complex func-
tions from the data [17–19]. These methods introduce artificial
intelligence to represent the intricate functions and, thereby, to
allow non-intuitive inverse designs in nanophotonics without
the need to solve computationally expensive electromagnetic
problems [20–25]. However, the approach that uses deep
learning generally entails high computational cost to obtain
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sufficient data for use in training and optimizing the network,
i.e., the network itself, including the number of neurons and
layers, should be optimized for the task at hand. Therefore, the
overall computational cost easily exceeds that of other design
methods for a single design. However, these up-front costs
are incurred only once, so the method can provide subsequent
on-demand designs within a few seconds.

This paper presents an efficient and spectrally sensitive de-
sign method that uses an artificial neural network (ANN) for
multiband absorbers. A five-layered MIM grating structure is
used for a multiband absorber, and its geometric parameters are
designed using an ANN. An ANN is developed to design struc-
tures and focuses particularly on target resonant wavelengths.
The developed ANN retrieves the geometric parameters from a
given target input spectrum and spectral resonant wavelengths.
The trained ANN is tested to evaluate its ability to design struc-
tures when given unseen optical properties, and then the de-
signed structures are evaluated by finite difference time
domain (FDTD) numerical simulation. The effective design
capability of the developed network for multiple design tasks
is investigated by achieving on-demand optical properties at
various target wavelengths. We also show that the trained
ANN can learn physical knowledge from the data by analyzing
design results on gradually changing target wavelengths of the
inputs. Finally, we demonstrate a method to reduce the size of
an ANN through an observation for practical applications.

2. RESULTS AND DISCUSSIONS

A. Deep Learning Procedure
The total 12,100 pairs of grating structures and their associated
reflection spectra were prepared using FDTD simulations for
deep learning. The network to design a specified grating struc-
ture is composed of two ANNs: one is a design network, and
one is a pre-trained spectrum network (Table 1). The design
network retrieves design parameters of period (P), grating width
(Gr), and each layer thickness (h1, h2, and hsub) [Fig. 1(b)] from
given inputs, and the pre-trained spectrum network evaluates
the output of the design network by predicting optical proper-
ties of the retrieved design parameters. The input reflection
spectrum with a wavelength of interest from 400 nm to
700 nm is discretized into 101 data points (R1 to Rn). In optical
design, the resonant wavelength of interest could be more im-
portant than the optical spectrum itself. Therefore, spectral in-
formation of resonant wavelengths [Index1 to Indexn in
Fig. 1(c)] is additionally fed into the network to achieve spec-
trally sensitive inverse design. The information is in binary
form with a total length of 101, where 1 represents the resonant
wavelength. The spectrum network is well-trained in advance,
showing good agreement with the FDTD simulation results

with an average mean squared error (MSE) of 0.001. The
aid of the well-trained spectrum network increases the reliabil-
ity and robustness of on-demand designs [21]. Overall, the two
cascaded networks evaluate the discrepancies ldesign loss between
the target and designed parameters, and l spectrum loss between the
target and the designed spectrum [Eq. (1)]. The design loss is
also added to improve the robustness of the network [26]. The
network is trained to minimize the total loss, which is a
weighted sum of two losses with the weight of w � 0.01.
As a pre-processing of the data, the output grating parameters
are divided by standard deviation of each parameter to mitigate
different ranges of parameters. We adopt the batch gradient
descent method with a batch size of 128, and all networks are
trained on a single Nvidia GTX 1080 Ti with 11 GB memory.

l total loss � wl design loss � �1 − w�l spectrum loss,

ldesign loss �
1

n

Xn�5

i�1

�Dtarget,i − D̂designed,i�2,

l spectrum loss �
1

n

Xn�101

i�1

�Rtarget,i − R̂designed,i�2: (1)

Table 1. Hyperparameters Used in the Training of Two Networks

Design Network Spectrum Network

Number of neurons [202, 400, 1000, 2000, 1000, 500, 200, 5] [5, 200, 500, 1000, 500, 200, 101]
Optimizer Adam, weight decay 10−5 Adam, weight decay 10−5

Learning rate From 10−5 to 10−4 10−4

Nonlinear activation functions Leaky ReLU, α � 0.2 Leaky ReLU, α � 0.2

Fig. 1. Schematic of the designing grating structures for multiband
absorbers. (a) A schematic of ANN for designing grating structures.
The network is composed of two artificial neural networks of design
network and pre-trained spectrum network. The design network both
takes the input reflection spectra and resonant wavelengths, and the
pre-trained spectrum network takes design parameters to evaluate the
optical reflection spectra of the designed structures. (b) A schematic
and (c) an example of optical property of a perfect multiband absorber
under investigation. Yellow markers indicate resonant wavelengths.
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B. Network Evaluation
The total data of 12,100 was split into 80% for training, 10%
for validation, and 10% for testing. In every training iteration,
the network was fitted on the training dataset, and then the
fitted network was validated against the validation dataset.
After training was complete, the trained network was evaluated
against the unseen test dataset. For each given target optical
property, the trained network provided a design; the parameters
were then used in FDTD simulation to obtain electromagnetic
responses. Figure 2(a) shows an example of the scanning elec-
tron microscope image of the designed grating structure. For a
given target optical property, the FDTD simulation result and
experimental result of the designed parameters show good
agreement [Fig. 2(b)]. For a total of 1210 test data, the average
MSE between target optical properties and designed responses
was about 0.023, which shows that the network can well re-
trieve appropriate structures for given desired optical properties.
Test examples in Fig. 2(c) show that the network can well
design grating structures with high spectral accuracy.

The proposed grating MIM structure can be regarded as two
cascaded MIM waveguides and, hence, can generate various
electromagnetic resonances depending on structural parame-
ters. For example, electric displacement in metal layers of the
MIM structure can form a loop and, hence, generate magnetic
resonance that amplifies strong electromagnetic absorption at
resonant wavelengths. To analyze mechanisms of multiple
resonances in the structure, we calculated the magnetic field
distributions and electric displacements at the resonant wave-
lengths [Fig. 3(a)]. Figures 3(b)–3(d) clearly show that the mag-
netic fields are strongly localized in the waveguide region. The
electric displacements in the structure (white arrows) form
closed loops (green circles), generating strong magnetic

resonances. At the wavelength of λ1 � 450 nm, electric
displacements in two SiO2 waveguide regions are symmetric
with respect to the second Al layer. On the other hand,
electric displacements in two SiO2 waveguide regions are anti-
symmetric with respect to the second Al layer at the
wavelengths of λ2 � 525 nm and λ3 � 600 nm. At the wave-
lengths of λ3 � 600 nm and λ2 � 525 nm, the first and sec-
ond orders of Fabry–Perot modes are generated inside the
second SiO2 waveguide region. Overall, the cascaded MIM
grating structures allow many interesting optical responses at

Fig. 2. (a) Scanning electron microscope image of a designed grating
structure with a scale bar of 1 μm. (b) Target reflection spectrum
(black solid line) and designed optical properties obtained from the
FDTD simulation (red dotted line) and experiment (yellow dotted
line). Grating parameters with [P, Gr, h1, h2, hsub] = [245 nm,
120 nm, 42 nm, 113 nm, 195 nm] are designed by the network.
(c) Examples of test results are shown. Black solid lines and red dotted
lines are the input and target reflection spectra, respectively, and yellow
markers are indexed resonant wavelengths.

Fig. 3. (a) Target (black solid line) and designed reflection spec-
trum. Magnetic field distribution (color maps) and electric displace-
ment (arrow surfaces) at the resonant wavelengths of (b) 450 nm,
(c) 525 nm, and (d) 600 nm.

Fig. 4. Design of multiband absorbers with (a) single, (b) double,
and (c) triple resonances. The first column shows the target input spec-
tra, and the second column shows the designed responses. The red
lines indicate target resonant wavelengths. The third column shows
the histogram of the MSE for a total of 51 input spectra. The insets
show the average MSE of the test input.
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various resonant wavelengths; for this reason, the proposed
structures are compatible with design by deep learning.
Design approaches that use deep learning usually entail a very
high initial computational cost to obtain large amounts of data,
but the trained network can be used repeatedly to design various
structures. Therefore, for multiple design tasks that target
various resonant wavelengths, the trained network can very
quickly design structural parameters that have the desired optical
properties.

To demonstrate the ANN’s capability for multiple design
tasks, we tested our network with various target reflection spec-
tra drawn with Lorentzian-shaped resonances (Fig. 4). We
aimed to design various absorbers that had single [Fig. 4(a)],
double [Fig. 4(b)], and triple [Fig. 4(c)] resonances. For each
multiband absorber, 51 instances of optical properties with dif-
ferent resonant wavelengths were used as desired target inputs.
For a total of 153 target optical properties, the designed re-
sponses show very good agreement. In particular, the optical
properties are well represented in the target wavelength regions
due to the additional inputs of the target resonance wave-
lengths. The MSE histograms (Fig. 4) show the statistical error
distribution of a dataset having 10 bins with an interval of 0.02.
The histogram counts the number of cases with MSE that fall
into each range out of a total of 51 cases. Overall, the average
MSE tended to increase as the number of resonances was in-
creased due to the difficulty of targeting multiple resonances.
Still, results clearly show that the ANN has highly generalizable
capability to design various target spectra. The network perfor-
mance for designing multiband absorbers could be improved if
more data on multiband spectra are added to the training data.

To investigate the effect of additional input information, we
also trained the network without the spectral information of
resonant wavelengths (Fig. 5). The network uses all other
parameters the same as those used in the main text, except that
the network only takes the reflection spectrum as input.
Without resonant wavelength information (the middle of
Fig. 5), the predicted optical properties of the designed struc-
tures can well mimic the overall behaviors of the target optical
properties, but resonant wavelengths deviate from the target
wavelengths (red dotted lines) resulting in poor spectral accu-
racy. On the other hand, with the resonant wavelength infor-
mation, the network can show much higher spectral accuracy
(the right of Fig. 5).

The design capability of the trained ANN was further
investigated by analyzing the output parameters as the target
resonant wavelengths were gradually changed (Fig. 6).
For gradually changing the target resonant wavelength from
480 nm to 680 nm of the single resonant absorber [Fig. 6(a)],
ANN successfully designed structures that can reproduce the
desired properties [Fig. 6(b)]. Figures 6(c) and 6(d) show the
designed parameters for given inputs. Interestingly, when
the target resonant wavelength was redshifted, the designed
substrate heights tended to increase, whereas the designed total
grating heights rarely changed. In addition, the periods were
almost unchanged at ∼245 nm, but the grating widths in-
creased continuously. These tendencies correspond to our
physical intuitions and knowledge, i.e., it is well known that
increasing the height of the insulator inside the MIM structure
will lead to the redshifted electromagnetic resonances. Also, the
increased grating width leads to an increased effective refractive
index of the waveguide structure resulting in redshift of the
resonant wavelength. Therefore, these results suggest that
the ANN can learn physics by analyzing data.

C. Network Pruning
We demonstrate an approach to prune the ANN by eliminat-
ing unnecessary neurons through observation of the trained
network. It has been known that building large ANNs can gen-
erally perform better on a variety of tasks, but it is also more
expensive to use. Therefore, it is important to reduce the size of
networks while minimizing performance degradation. ANN
pruning is a method of compressing network size by removing
weights [27–29]. Here, we demonstrate pruning the ANN
through observation. After the network was trained, we visu-
alized the trained values of the weights connecting neurons in
the previous input layer (x axis) to neurons in the output layer
(y axis) (Fig. 7). Interestingly, we observed that some weights
linking between two neurons are almost zero [white in
Fig. 7(a)]. For example, all weights connecting from all neurons
in layer 2 (L2) to the first neuron in layer 3 (L3) are zero (the
first white horizontal line in L3), so the neuron is turned off.

Fig. 5. Comparison between two networks fed with and without
spectral resonant wavelengths. The left is the target input spectra;
the middle and the right are the predicted response of the networks
without and with spectral information, respectively. The red lines are
target resonant wavelengths.

Fig. 6. Analysis on output parameters for gradually changing target
resonant wavelengths. (a) Target spectra with gradually changing res-
onant target wavelengths and (b) corresponding designed responses.
For given varying input spectra, the designed parameters of (c) grating
height and substrate height and (d) period and grating width.
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It means that the neuron did not receive any information from
all neurons in the previous layer and, consequently, did not
transmit any information to the next layer (the first white
vertical line in L4). This implies that the neuron did not par-
ticipate in learning, so layer 3 has more neurons than necessary.
Therefore, we counted the number of such turned-off neurons
in each layer and removed the neurons to reduce the total size
of the network. By reducing the size of the network, the num-
ber of trainable parameters is reduced from about 5 million to
1.6 million (Table 2). Not surprisingly, despite the significant
network compression, the pruned network retains the design
capability similar to the original network in the MSE histogram
of the test data [Figs. 7(c) and 7(d)]. In addition, the pruned
network also enables efficient multiple design tasks for various
user-drawn spectra (Fig. 8). These results suggest that the net-
work can be pruned through observation of the trained weights.
The proposed network method could be applied to any other
research fields that use ANN.

3. CONCLUSION

We have proposed a method that uses deep learning to design
spectrally sensitive multiband absorbers. By feeding additional
spectral information of resonant wavelengths, the developed
ANN achieved a highly robust and accurate design of multi-
band absorbers. We have also analyzed the results of the de-
signed outputs when the resonant wavelength was gradually
changed. For gradually redshifting inputs, the designed param-
eters of the substrate height and period tended to increase, in
correspondence to physical intuition. The results suggest that
the trained network can well grasp and learn physics by ana-
lyzing data. We envision that this can also be applied to other
nanophotonic problems and may solve complex light–matter
interactions that are even beyond our knowledge. Finally, we
proposed a systematic method that uses observation of the
trained network to guide its pruning. The method is expected
to significantly reduce the computational cost involved in
network reduction. The method could be extended to other
research fields that use ANNs. In this study, we considered de-
signing one structure for one given spectrum, but it is worth
noting that multiple candidates could be designed by using
deep learning algorithms for multi-output regression. We be-
lieve considering several design candidates would be beneficial
for fabrication when the target design becomes much more
complex.
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Table 2. Number of Neurons in Each Layer

Layer 1 2 3 4 5 6 7 Total

Original 202 400 1000 2000 1000 500 200 5055905
Reduced 202 400 1000 499 625 474 199 1651642

Fig. 8. Design of multiband absorbers with (a) single, (b) double,
and (c) triple resonances using the reduced network. The first column
shows target input spectra, and the second column shows the designed
response. The red lines indicate target resonant wavelengths. The third
column shows the histogram of the MSE for a total of 51 input spectra.

Fig. 7. Network pruning results. Visualization of the trained
weights in (a) the original network and (b) the pruned network.
For each layer (Ln, n � 1, 2,…, 7), the number of neurons is indi-
cated. MSE histogram of the test data for (c) the original network
and (d) the pruned network.
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